
Constructive Computer Architecture:

Non-Pipelined Processors - 2

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-1

Single-Cycle Implementation
code structure

module mkProc(Proc);

Reg#(Addr) pc <- mkRegU;

RFile rf <- mkRFile;

IMemory iMem <- mkIMemory;

DMemory dMem <- mkDMemory;

rule doProc;

let inst = iMem.req(pc);

let dInst = decode(inst);

let rVal1 = rf.rd1(dInst.rSrc1);

let rVal2 = rf.rd2(dInst.rSrc2);

let eInst = exec(dInst, rVal1, rVal2, pc);

update rf, pc and dMem

extracts fields
needed for
execution

produces values
needed to
update the
processor state

instantiate the state

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-2

Single-Cycle RISC-V atomic state

updates

if(eInst.iType == Ld) // Load from memory

eInst.data <- dMem.req(MemReq{op: Ld,

addr: eInst.addr, data: ?});

else if (eInst.iType == St) // Store to memory

let dummy <- dMem.req(MemReq{op: St,

addr: eInst.addr, data: data});

if(isValid(eInst.dst)) // Register write

rf.wr(fromMaybe(?, eInst.dst), eInst.data);

pc <= eInst.brTaken ? eInst.addr : pc + 4;

endrule

endmodule

state updates

The whole processor is described using one rule;
lots of big combinational functions

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-3

Processor interface

interface Proc;

method Action hostToCpu(Addr startpc);

method ActionValue#(CpuToHost) cpuToHost;

endinterface

typedef struct {CpuToHostType c2hType; Bit#(16) data;}

CpuToHost deriving(Bits, Eq);

typedef enum {ExitCode, PrintChar, PrintIntLow,

PrintIntHigh} CpuToHostType deriving(Bits, Eq);

communication is
done via CSRs or
memory

6.175 convention

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-4

Instructions to Read and
Write CSR
6.175 convention uses a CSR (mtohost) to communicate with
the host

 opcode = SYSTEM

 CSRW rs1, csr (funct3 = CSRRW, rd = x0): csr  rs1

 CSRR csr, rd (funct3 = CSRRS, rs1 = x0): rd  csr

 New enums in IType: Csrr, Csrw

csr funct3rs1 rd opcode

12 5 3 5 7

typedef Bit#(12) CsrIndx; // CSR index is 12-bit

CSR is needed as an additional field in DecodedInst and
ExecInst types

Maybe#(CsrIndex) csr;

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-5

Code with CSRs
// csrf: module that implements all CSRs

let csrVal = csrf.rd(fromMaybe(?, dInst.csr));

let eInst = exec(dInst, rVal1, rVal2, pc, csrVal);

csrf.wr(eInst.iType == Csrw ? eInst.csr : Invalid,

eInst.data);

write CSR (CSRW instruction) and indicate the
completion of an instruction

pass CSR values to execute CSRR

We did not show these lines in our processor to
avoid cluttering the slides

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-6

Communicating with the
host

We will provide you C library functions like
print, which use CSR to communicate with the
host; you will almost never encode anything
directly to communicate with the host

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-7

Single-Cycle RISC-V:
Clock Speed

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4

tClock > tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each
instruction in two clock cycles

tClock > max {tM , (tDEC + tRF + tALU+ tM+ tWB)}

However, this may not improve the performance because
each instruction will now take two cycles to execute

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-8

Structural Hazards
Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards

 Princeton style architectures use the same memory
for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

 If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

Usually extra registers are required to hold
values between cycles

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-9

Two-Cycle RISC-V

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

state

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-10

Two-Cycle RISC-V
module mkProc(Proc);

Reg#(Addr) pc <- mkRegU; RFile rf <- mkRFile;

IMemory iMem <- mkIMemory; DMemory dMem <- mkDMemory;

Reg#(Data) f2d <- mkRegU;

Reg#(State) state <- mkReg(Fetch);

rule doFetch (state == Fetch);

let inst = iMem.req(pc);

f2d <= inst;

state <= Execute;

endrule

rule doExecute(stage==Execute);

let inst = f2d;

let dInst = decode(inst);

... Copy the code from slides 2 and 3 ...
pc <= eInst.brTaken ? eInst.addr : pc + 4;

state <= Fetch;

endrule endmodule

If state is Fetch then fetch
the instruction and put it in
f2d, and change the state to
Execute

If state is Execute then
execute the instruction in f2d,
and change the state to Fetch

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-11

Two-Cycle RISC-V: Analysis

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
fr

stage

In any given clock
cycle, lot of unused

hardware !

ExecuteFetch

Pipeline execution of instructions to increase
the throughput

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-12

Problems in Instruction
pipelining

Control hazard: Insti+1 is not known until Insti is at least
decoded. So which instruction should be fetched?

Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.g.,
contention for memory

Data hazard: Insti may affect the state of the machine (pc,
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

InstiInsti+1

none of these hazards were present in the FFT pipeline
October 4, 2017 http://csg.csail.mit.edu/6.175 L11-13

Arithmetic versus
Instruction pipelining

The data items in an arithmetic pipeline, e.g.,
FFT, are independent of each other

In processors, older instructions in the pipeline
may affect the younger ones

 This causes pipeline stalls or requires other fancy
tricks to avoid stalls

 Processor pipelines are significantly more
complicated than arithmetic pipelines

sReg1 sReg2

x

inQ

f0 f1 f2

outQ

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-14

Hazards can’t be wished away

The power of computers comes
from the fact that the instructions
in a program are not independent
of each other

 must deal with hazard

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-15

Control Hazards

General solution – speculate, i.e., predict the next
instruction address
 requires the next-instruction-address prediction machinery; can

be as simple as pc+4
 prediction machinery is usually elaborate because it dynamically

learns from the past behavior of the program

What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct

processor state and restart the execution at the correct pc

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

InstiInsti+1 Insti+1 is not known
until Insti is at least
decoded. So which
instruction should be
fetched?

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-16

Two-stage Pipelined RISC-V

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

nap
f2d

Fetch stage must predict
the next instruction to
fetch to have any pipelining

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the
Execute stage must kill the
mispredicted instruction in f2d

kill
misprediction

correct pc

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-17

Pipelining Two-Cycle RISC-V
Synchronous Pipeline, singlerule

rule doPipeline ;

Fetch phase –
fetch an instruction to be put into register ir; and
guess the next pc

Execute phase –
execute the instruction in ir if it has a valid one;
determine if the next pc is what we had guessed;
if the guess was correct then assign the newly fetched instruction and
the guessed pc into ir and pc, respectively;
if the guess was incorrect then put Invalid in ir and the correct pc into
the pc

endrule

pc

ir

ExecuteFetch
invalid

real pc

guessed next pc

fetched instruction

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-18

Fetch and Execute
are concurrently
active on two
different
instructions

Pipelining Two-Cycle RISC-V
synchronous pipeline, i.e., singlerule

rule doPipeline ;

let newInst = iMem.req(pc);

let newPpc = nap(pc); let newPc = ppc;

let newIr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc,

inst:newIinst});

if(isValid(ir)) begin

let x = fromMaybe(?, ir); let irpc = x.pc;

let ppc = x.ppc; let inst = x.inst;

let dInst = decode(inst);

... register fetch ...;

let eInst = exec(dInst, rVal1, rVal2, irpc, ppc);

...memory operation ...

...rf update ...

if (eInst.mispredict) begin newIr = Invalid;

newPc = eInst.addr; end

end

pc <= newPc; ir <= newIr;

endrule

fetch

execute

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-19

pass the pc and predicted pc
to the execute stage

exec returns a flag to
indicate misprediction

Elastic two-stage pipeline

<inst, pc, ppc>

We replace f2d register by a FIFO to make the machine
more elastic, that is, Fetch keeps putting instructions
into f2d and Execute keeps removing and executing
instructions from f2d

Fetch passes the pc and predicted pc in addition to the
inst to Execute; Execute redirects the PC in case of a
miss-prediction

Fetch Execute

PC

http://csg.csail.mit.edu/6.175October 12, 2016 L12-20

pc redirect

f2d

