X
““Constructive Computer Architecture:

Non-Pipelined Processors - 2

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

/4

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-1

Single-Cycle Implementation
code structure

N

RFile

IMemory

DMemory

rule doProc;

pc <- mkReqgU;
rf <- mkRFile;
iMem <- mkIMemory;

dMem <- mkDMemorvy;

/ﬁodule mkProc (Proc) ;
Reg# (Addr)

let inst = iMem.req(peli— oxtpacts fields

let dInst = decode(inst); needed for

let rvall = rf.rdl(dInst.rSrcl); execution

let rval?2 = rf.rd2 (dInst.rSrc?2);

let eInst = exec(dInst, rVall, rVal2, pc);
produces values

update rf, pc and dMem heeded to

October 4, 2017

update the
http://csg.csail.mit.edu/6.175 pI"OCCSSOI" STC(T@

— instantiate the state

L11-2

Single-Cycle RISC-V atomic state

updates
p
<V
///If(elnst.iType == Ld) // Load from memory \\\\
elnst.data <- dMem.req(MemReg{op: Ld,
addr: eInst.addr, data: ?});
else if (eInst.iType == St) // Store to memory

let dummy <- dMem.req (MemReqg{op: St,
addr: eInst.addr, data: data}l);

if (isValid(eInst.dst)) // Register write
rf.wr (fromMaybe (?, elInst.dst), elnst.data);

\\;ic <= elnst.brTaken ? elInst.addr : pc + 4; ////

endrule state updates
endmodule

The whole processor is described using one rule;

lots of big combinational functions

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-3

Processor interface

Testbench calls these methods to start
_E processor execution and to query final status

/\/

- cpuToHost hostToCpu TN

mkProc

(iMem) C dMem)
- x A =4
Initial memory contents
automatically loaded into memory
models by Bluesim simulator

6.175 convention

communication is
done via CSRs or
memory

interface Proc;
method Action hostToCpu (Addr startpc);
method ActionValue# (CpuToHost) cpuToHOst;

endinterface

typedef struct {CpuToHostType c2hType; Bit#(16) data;}
CpuToHost deriving (Bits, Eq);

typedef enum {Exi1tCode, PrintChar, PrintIntLow,
PrintIntHigh} CpuToHostType deriving (Bits, Eq)

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-4

Instructions to Read and
Write CSR

" 6.175 convention uses a CSR (mtohost) to communicate with
the host

N

12 5 3 5 7
csr rsi funct3 rd opcode

= opcode = SYSTEM

m CSRW rs1, csr (funct3 = CSRRW, rd = x0): csr €« rsl
m CSRR csr, rd (funct3 = CSRRS, rs1 = x0): rd €« csr
= New enums in IType: Csrr, Csrw

typedef Bit#(12) CsrIndx; // CSR index is 12-bit
CSR is needed as an additional field in becodedInst and

ExecInst types
Maybe# (CsrIndex) csr;

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-5

Code with CSRs

L/
// csrf: module that implements all CSRs
let csrVal = csrf.rd(fromMaybe (?, dInst.csr));
let eInst = exec(dInst, rVall, rVal2Z2, pc, csrVal);

N

pass CSR values to execute CSRR

csrf.wr(elnst.1Type == Csrw ? elInst.csr : Invalid,
elnst.data);

write CSR (CSRW instruction) and indicate the
completion of an instruction

We did not show these lines in our processor to
avoid cluttering the slides

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-6

Communicating with the
host

We will provide you C library functions like
print, which use CSR to communicate with the
host; you will almost never encode anything
directly to communicate with the host

N

October 4, 2017 http://csg.csail.mit.edu/6.175

L11-7

Single-Cycle RISC-V:

Clock Speed

[

N

Register File

r
P_CLE]J'@ |[Decode]

AITTR

Inst

Vlemorzl

JFxecuteds

-\
Data
Memor

ook = tv + tope + Lre + Tyt Tyt tys

We can improve the clock speed if we execute each

instruction in two clock cycles

tooek > Max {ty, (tpec + tre + Loyt tyt tws)

However, this may not improve the performance because

each instruction will now take two cycles to execute
October 4, 2017 http://csg.csail.mit.edu/6.175

L11-8

Structural Hazards

L/

Sometimes multicycle implementations are
necessary because of resource conflicts, aka,
structural hazards

m Princeton style architectures use the same memory
for instruction and data and consequently, require at
least two cycles to execute Load/Store instructions

n If the register file supported less than 2 reads and
one write concurrently then most instructions would
take more than one cycle to execute

Usually extra registers are required to hold

values between cycles

N

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-9

Two-Cycle RISC-V

p
4
Register File
D state
I LA
PC f2d | Decode |Execute
A 1A :
Inst Data
Memory Memory

Introduce register “f2d” to hold a fetched
instruction and register “state” to remember the
state (fetch/execute) of the processor

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-10

/Two—CycIe RISC-V

\\module mkProc (Proc) ;

Reg# (Addr) pc <- mkRegU; RFile rf <- mkRFile;
IMemory 1iMem <- mkIMemory; DMemory dMem <- mkDMemory;
Reg# (Data) f2d <- mkRegU;

Reg# (State) state <- mkReg (Fetch);

rute ceFetch lstate == FRLe)i | Tf state is Fetch then fefch
et inst = iMem.req(pC)i | the instruction and put it in
t2d 3= insty f2d, and change the state to
state <= Execute; ExecuTe

endrule

rule doExecute (stage==Execute) ;| If state is Execute then

let inst = f24; execute the instruction in f2d,

let dInst = decode(inst) ;

and change the state to Fetch

... Copy the code from slides 2 and 3 ...
pc <= elInst.brTaken ? elInst.addr : pc + 4;
state <= Fetch;

endrule endmodule

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-11

Two—CycIe RISC-V: Analysis

Fetch § Execute Register File

I F § r‘—‘\
PC fr | Decode |Execute

Inst In any given clock Data
Memory cycle, lot of unused Memory
hardware !

N

Pipeline execution of instructions to increase
the throughput

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-12

Problems in Instruction
pipelining

Inst, Inst;

N

Register File

A A a a
T—a |47
PC f2d »| Decode ; Execute

ol Bl —
Inst Data
Memory Memory

@ Control hazard: Inst, ; is not known until Inst;is at least
decoded. So which instruction should be fetched?

#® Structural hazard: Two instructions in the pipeline may
require the same resource at the same time, e.qg.,
contention for memory

@ Data hazard: Inst, may affect the state of the machine (pc,
rf, dMem) - Inst,.;must be fully cognizant of this change

none of these hazards were present in the FFT pipeline
October 4, 2017 http://csg.csail.mit.edu/6.175 L11-13

Arithmetic versus
Instruction pipelining

The data items in an arithmetic pipeline, e.g.,
FFT, are independent of each other

KOS S F

inQ sRegl sReg2 OutQ

N

In processors, older instructions in the pipeline
may affect the younger ones

= This causes pipeline stalls or requires other fancy
tricks to avoid stalls

s Processor pipelines are significantly more
complicated than arithmetic pipelines

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-14

Hazards can’t be wished away

N

#The power of computers comes
from the fact that the instructions
in @ program are not independent
of each other

— must deal with hazard

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-15

Control Hazards

p
N
Inst, 4 Inst; Reglizer ke Inst,; is not known
7 until Inst.is at least
i i decoded. So which
f f2di__y| Decode % Execute 1 instruction should be
fetched?
Inst Data
Memory Memory

General solution - speculate, i.e., predict the next

instruction address

= requires the next-instruction-address prediction machinery; can
be as simple as pc+4

s prediction machinery is usually elaborate because it dynamically
learns from the past behavior of the program
What if speculation goes wrong?

= machinery to kill the wrong-path instructions, restore the correct
processor state and restart the execution at the correct pc

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-16

N

[con

Two-stage Pipelined RISC-V

Fetch stage J Decode-RegisterFetch-Execute-Memory-
WriteBack stage

Register File

misprediction

correct pc J /\

|

PC f2d | Decode |Execute

Inst
Memory

Fetch stage must predict
the next instruction to
fetch to have any pipelining

Data
Memory

In case of a misprediction the
Execute stage must kill the
mispredicted instruction in f2d

October 4, 2017 http://csg.csail.mit.edu/6.175

L11-17

Pipelining Two-Cycle RISC-V

Synchronous Pipeline, singlerule

guessed next pc

N

L

i Fetch and Execute
i " PC are concurrently
= SEEUITE - : active on two
L Ir different
fetched instruction instructions

rule doPipeline ;

Fetch phase -
fetch an instruction to be put into register ir; and
guess the next pc

Execute phase -
execute the instruction in ir if it has a valid one;
determine if the next pc is what we had guessed:;
if the guess was correct then assign the newly fetched instruction and
the guessed pc into ir and pc, respectively;

if the guess was incorrect then put Invalid in ir and the correct pc into
the pc

endrule
October 4, 2017 http://csg.csail.mit.edu/6.175 L11-18

Pipelining Two-Cycle RISC-V

synchronous pipeline, i.e.

v
rule doPipeline ;

N

, singlerule

pass the pc and predicted pc

let newInst

iMem.req(pc) ;
nap (pc) ;

let newPpc

let newPc
let newlIr=Valid (FetchZ2Decode{pc:newPc, ppc:newPpc,

to the execute stage
ppc% |

inst:newlIinst});

if(1sValid(ir)) begin

execute

let x = fromMaybe (?, ir); let irpc = x.pc;
let ppc = x.ppc; let inst = x.inst;
let dInst = decode(inst); ?X?C r'e’rur'.ns a fl’ag.’ro

register fetch ...: indicate misprediction
let eInst = exec(dInst, rVall, rVal2, irpc, ppc);
...memory operation
.« rf update
if (eInst.mispredict) begin newlr = Invalid;

newPc = elInst.addr; end
end

pc <= newPc;

endrule
October 4, 2017

ir <= newlr;

http://csg.csail.mit.edu/6.175

L11-19

Elastic two-stage pipeline

N

=7 pcC redirect
Fetch f2d | Execute

»
>

<inst, pc, ppc>

»
>

We replace f2d register by a FIFO to make the machine
more elastic, that is, Fetch keeps putting instructions
into f2d and Execute keeps removing and executing
instructions from f2d

Fetch passes the pc and predicted pc in addition to the
inst to Execute; Execute redirects the PC in case of a
miss-prediction

October 12, 2016 http://csg.csail.mit.edu/6.175 L12-20

