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Single-Cycle Implementation 
code structure

module mkProc(Proc);

Reg#(Addr)  pc <- mkRegU;

RFile rf <- mkRFile;

IMemory iMem <- mkIMemory;

DMemory dMem <- mkDMemory;

rule doProc;

let inst = iMem.req(pc);

let dInst = decode(inst);

let rVal1 = rf.rd1(dInst.rSrc1);

let rVal2 = rf.rd2(dInst.rSrc2);

let eInst = exec(dInst, rVal1, rVal2, pc);

update rf, pc and dMem

extracts fields 
needed for 
execution

produces values 
needed to 
update the 
processor state

instantiate the state
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Single-Cycle RISC-V atomic state 

updates

if(eInst.iType == Ld) // Load from memory

eInst.data <- dMem.req(MemReq{op: Ld,

addr: eInst.addr, data: ?});

else if (eInst.iType == St) // Store to memory

let dummy <- dMem.req(MemReq{op: St, 

addr: eInst.addr, data: data});

if(isValid(eInst.dst)) // Register write

rf.wr(fromMaybe(?, eInst.dst), eInst.data);

pc <= eInst.brTaken ? eInst.addr : pc + 4;

endrule

endmodule

state updates

The whole processor is described using one rule; 
lots of big combinational functions
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Processor interface

interface Proc;

method Action hostToCpu(Addr startpc);

method ActionValue#(CpuToHost) cpuToHost;

endinterface

typedef struct {CpuToHostType c2hType; Bit#(16) data;} 

CpuToHost deriving(Bits, Eq);

typedef enum {ExitCode, PrintChar, PrintIntLow, 

PrintIntHigh} CpuToHostType deriving(Bits, Eq);

communication is 
done via CSRs or 
memory

6.175 convention
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Instructions to Read and 
Write CSR
6.175 convention uses a CSR (mtohost) to communicate with 
the host

 opcode = SYSTEM

 CSRW rs1, csr (funct3 = CSRRW, rd = x0): csr  rs1

 CSRR  csr, rd (funct3 = CSRRS, rs1 = x0): rd  csr

 New enums in IType: Csrr, Csrw

csr funct3rs1 rd opcode

12 5 3 5 7

typedef Bit#(12) CsrIndx; // CSR index is 12-bit 

CSR is needed as an additional field in DecodedInst and 
ExecInst types

Maybe#(CsrIndex) csr; 
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Code with CSRs
// csrf: module that implements all CSRs

let csrVal = csrf.rd(fromMaybe(?, dInst.csr));

let eInst = exec(dInst, rVal1, rVal2, pc, csrVal);

csrf.wr(eInst.iType == Csrw ? eInst.csr : Invalid, 

eInst.data);  

write CSR (CSRW instruction) and indicate the 
completion of an instruction

pass CSR values to execute CSRR

We did not show these lines in our processor to 
avoid cluttering the slides 
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Communicating with the 
host

We will provide you C library functions like 
print, which use CSR to communicate with the 
host; you will almost never encode anything 
directly to communicate with the host

October 4, 2017 http://csg.csail.mit.edu/6.175 L11-7



Single-Cycle RISC-V: 
Clock Speed

PC

Inst
Memory

Decode

Register File

Execute

Data
Memory

+4

tClock >  tM + tDEC + tRF + tALU+ tM+ tWB

We can improve the clock speed if we execute each 
instruction in two clock cycles

tClock >  max {tM , (tDEC + tRF + tALU+ tM+ tWB )}

However, this may not improve the performance because 
each instruction will now take two cycles to execute
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Structural Hazards
Sometimes multicycle implementations are 
necessary because of resource conflicts, aka,  
structural hazards 

 Princeton style architectures use the same memory 
for instruction and data and consequently, require at 
least two cycles to execute Load/Store instructions

 If the register file supported less than 2 reads and 
one write concurrently then most instructions would 
take more than one cycle to execute

Usually extra registers are required to hold 
values between cycles
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Two-Cycle RISC-V

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

state

Introduce register “f2d” to hold a fetched 
instruction and register “state” to remember the 
state (fetch/execute) of the processor
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Two-Cycle RISC-V
module mkProc(Proc);

Reg#(Addr)  pc <- mkRegU;   RFile rf <- mkRFile;

IMemory iMem <- mkIMemory; DMemory dMem <- mkDMemory; 

Reg#(Data)  f2d <- mkRegU;

Reg#(State) state <- mkReg(Fetch);

rule doFetch (state == Fetch);

let inst = iMem.req(pc);

f2d <= inst;

state <= Execute;

endrule

rule doExecute(stage==Execute);

let inst = f2d;

let dInst = decode(inst);

... Copy the code from slides 2 and 3 ...   
pc <= eInst.brTaken ? eInst.addr : pc + 4;

state <= Fetch;

endrule endmodule

If state is Fetch then fetch 
the instruction and put it in 
f2d, and change the state to 
Execute 

If state is Execute then 
execute the instruction in f2d, 
and change the state to Fetch 
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Two-Cycle RISC-V: Analysis

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
fr

stage

In any given clock 
cycle, lot of unused 

hardware !

ExecuteFetch

Pipeline execution of instructions to increase 
the throughput 
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Problems in Instruction 
pipelining

Control hazard: Insti+1 is not known until Insti is at least 
decoded. So which instruction should be fetched?

Structural hazard: Two instructions in the pipeline may 
require the same resource at the same time, e.g., 
contention for memory

Data hazard: Insti may affect the state of the machine (pc, 
rf, dMem) – Insti+1must be fully cognizant of this change

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

InstiInsti+1

none of these hazards were present in the FFT pipeline  
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Arithmetic versus 
Instruction pipelining

The data items in an arithmetic pipeline, e.g., 
FFT, are independent of each other

In processors, older instructions in the pipeline 
may affect the younger ones

 This causes pipeline stalls or requires other fancy 
tricks to avoid stalls

 Processor pipelines are significantly more 
complicated than arithmetic pipelines

sReg1 sReg2

x

inQ

f0 f1 f2

outQ
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Hazards can’t be wished away

The power of computers comes 
from the fact that the instructions 
in a program are not independent 
of each other

 must deal with hazard
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Control Hazards

General solution – speculate, i.e., predict the next 
instruction address
 requires the next-instruction-address prediction machinery; can 

be as simple as pc+4 
 prediction machinery is usually elaborate because it dynamically 

learns from the past behavior of the program

What if speculation goes wrong?
 machinery to kill the wrong-path instructions, restore the correct 

processor state and restart the execution at the correct pc 

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

+4
f2d

InstiInsti+1 Insti+1 is not known 
until Insti is at least 
decoded. So which 
instruction should be 
fetched?
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Two-stage Pipelined RISC-V

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

nap
f2d

Fetch stage must predict 
the next instruction to  
fetch to have any pipelining 

Fetch stage Decode-RegisterFetch-Execute-Memory-
WriteBack stage

In case of a misprediction the 
Execute stage must kill the 
mispredicted instruction in f2d

kill
misprediction

correct pc
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Pipelining Two-Cycle RISC-V 
Synchronous Pipeline, singlerule

rule doPipeline ;

Fetch phase –
fetch an instruction to be put into register ir; and 
guess the next pc

Execute phase –
execute the instruction in ir if it has a valid one; 
determine if the next pc is what we had guessed; 
if the guess was correct then assign the newly fetched instruction and
the guessed pc into ir and pc, respectively;
if the guess was incorrect then put Invalid in ir and the correct pc into  
the pc

endrule

pc  

ir

ExecuteFetch
invalid

real pc

guessed next pc

fetched instruction
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Fetch and Execute 
are concurrently 
active on two 
different 
instructions



Pipelining Two-Cycle RISC-V 
synchronous pipeline, i.e., singlerule

rule doPipeline ;

let newInst = iMem.req(pc);

let newPpc = nap(pc); let newPc = ppc;

let newIr=Valid(Fetch2Decode{pc:newPc,ppc:newPpc,

inst:newIinst});

if(isValid(ir)) begin

let x = fromMaybe(?, ir); let irpc = x.pc; 

let ppc = x.ppc; let inst = x.inst;

let dInst = decode(inst);

... register fetch ...;

let eInst = exec(dInst, rVal1, rVal2, irpc, ppc);

...memory operation ...

...rf update ...

if (eInst.mispredict) begin newIr = Invalid; 

newPc = eInst.addr;  end

end

pc <= newPc; ir <= newIr;

endrule

fetch

execute
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pass the pc and  predicted pc 
to the execute stage

exec returns a flag to 
indicate misprediction



Elastic two-stage pipeline

<inst, pc, ppc>

We replace f2d register by a FIFO to make the machine 
more elastic, that is, Fetch keeps putting instructions 
into f2d and Execute keeps removing and executing 
instructions from f2d

Fetch passes the pc and predicted pc in addition to the 
inst to Execute; Execute redirects the PC in case of a 
miss-prediction

Fetch Execute

PC
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pc redirect

f2d


